Selbstorganisation

Struktur ohne Chaos

30. November 2015, 12:19 Uhr | Marcel Consée
Diesen Artikel anhören

Fortsetzung des Artikels von Teil 1

Benachbarte Zellen reagieren auf ähnlich orientierte Kanten

»Dass zufällige Verschaltungen in Nervensystemen tatsächlich existieren, haben Neurobiologen vor zwei Jahren im Geruchssystem der Fruchtfliege experimentell gezeigt« erklärt Manuel Schottdorf, Forscher am Max-Planck-Institut für Dynamik und Selbstorganisation. Ob aber das Gehirn von Säugetieren die möglichen Vorteile zufälliger Verschaltungen tatsächlich ausnutzt, oder ob es eher auf selbstorganisierte Nervennetze setzt, war bislang unklar. Das Durcheinander aller neuronalen Verbindungen im Gehirn zu entwirren, ist bisher unmöglich. Daher bediente sich das Team, dem neben den Max-Planck-Wissenschaftlern um Fred Wolf auch Kollegen der Rockefeller University in New York und der Duke University in North Carolina angehörten, einer alternativen Methode: Die Forscher analysierten die Funktionsweise der Schaltkreise in der Sehrinde und zogen daraus Rückschlüsse über deren Aufbau.

Wie Neurobiologen bereits seit längerem wissen, helfen uns Nervenzellen in diesem Teil des Gehirns unter anderem, die Kanten von Objekten zu erkennen. Jede Nervenzelle bevorzugt dabei eine Orientierung von Kanten, auf die sie besonders stark reagiert, beispielsweise senkrechte, waagrechte, oder schräge. Benachbarte Zellen favorisieren meistens ähnliche Kantenorientierungen. Eine Ausnahme bilden einzelne Punkte, sogenannte Orientierungszentren, in denen die bevorzugten Orientierungen der umgebenden Zellen wie die Flügel eines Windrädchens zusammentreffen.

Wie viele dieser Zentren existieren und wie sie im Gewebe verteilt sein müssten, wenn die Idee der Zufallsverschaltungen gilt, haben die Göttinger Wissenschaftler exakt berechnet. Diese Vorhersagen unterschieden sich jedoch von der tatsächlichen Verteilung der Orientierungszentren, die Präzisionsmessung offenbarten. Die Messungen nahmen die Max-Planck-Forscher in Zusammenarbeit mit Experimentatoren der Duke University vor. Unter anderem beobachteten die Forscher dabei in einem bestimmten Volumen von Nervenzellen weniger Orientierungszentren, als die Berechnungen für zufällige Verknüpfungen ergaben. Zufällige Verschaltungen können die tatsächliche Anordnung der Orientierungszentren im Gehirn also nicht erklären. Modelle, in denen sich die Netzwerke selbstorganisiert formen, können dagegen nicht nur die Anzahl sondern auch die sehr komplexe räumliche Anordnung der Zentren präzise nachbilden.

Die Forscher schließen nicht aus, dass anfangs zufällige Verbindungen vorhanden sein können, wenn sich das Gehirn entwickelt. Durch visuelle Erfahrung und die dynamische Umbildung von Nervenverbindungen reorganisiert sich das Gehirn jedoch so weitgehend, dass von den anfänglichen Verbindungen wohl kaum etwas übrig ist. »Die Selbstorganisation der Schaltkreise im Gehirn ist nach unserer Studie die plausibelste Theorie für die Feinstruktur der Schaltkreise des visuellen Systems.«, erklärt Wolfgang Keil, der am Max-Planck-Institut für Dynamik und Selbstorganisation promovierte und gegenwärtig an der Rockefeller University forscht. Zu dieser Erkenntnis passt, dass Säugetiere, also auch wir Menschen, erst nach der Geburt sehen lernen. Für den vollen Durchblick reichen zufällige Netzwerke, wie sie anfangs möglicherweise vorhanden sind, offenbar nicht aus.

Anbieter zum Thema

zu Matchmaker+

  1. Struktur ohne Chaos
  2. Benachbarte Zellen reagieren auf ähnlich orientierte Kanten

Lesen Sie mehr zum Thema


Das könnte Sie auch interessieren

Jetzt kostenfreie Newsletter bestellen!

Weitere Artikel zu Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Weitere Artikel zu Medizinelektronik