KIT reduziert Produktionskosten Neues Verfahren zur Herstellung von Batterieelektroden

Ein neues Beschichtungsverfahren entwickelt am KIT soll für eine schnelle Produktion von Elektroden für Lithium-Ionen-Batterien sorgen.
Ein neues Beschichtungsverfahren entwickelt am KIT soll für eine schnelle Produktion von Elektroden für Lithium-Ionen-Batterien sorgen.

Mit einem neuen Beschichtungsverfahren gelingt dem Karlsruher Institut für Technologie eine äußerst schnelle Produktion von Elektroden für Lithium-Ionen-Batterien. Gleichzeitig verbessert das neue Verfahren die Qualität der Elektroden und reduziert die Produktionskosten.

Beim Herstellen von Elektroden für Batterien wird Elektrodenmaterial als dünne Paste in einem rechteckigen Muster auf eine Folie aus Kupfer oder Aluminium aufgetragen. Unterbrochen ist das Muster von kurzen Abschnitten unbeschichteter Folie, die zur Ableitung der Elektronen unerlässlich sind. Für diese Abschnitte muss der Beschichtungsprozess immer wieder unterbrochen und neu gestartet werden. Eine besondere Herausforderung besteht dabei darin, scharfe Kanten ohne ein Verschmieren des Materials bei gleichzeitig sehr hohen Produktionsgeschwindigkeiten zu ermöglichen. Denn auch kleine Produktionsfehler machen Batteriezellen unbrauchbar. Aufgrund des hohen Ausschusses und des geringen Durchsatzes sind Lithium-Ionen-Batterien heute teurer, als es eigentlich notwendig wäre.

Eine wichtige Weiterentwicklung gelang nun am KIT. Hier wurde die Düse für das Elektrodenmaterial mit einer schwingenden Membran, die das Auftragen der Beschichtungspaste zyklisch stoppt und wieder startet, ausgestattet und weiterentwickelt. Dadurch sind sehr schnelle Reaktionszeiten und somit hohe Geschwindigkeiten möglich. »Bislang waren Hersteller auf Geschwindigkeiten von etwa 30 bis 40 Meter pro Minute begrenzt. Mit der neuen Technologie erreichen wir bis zu 150 Meter pro Minute bei der Elektrodenbeschichtung«, erklärt Doktorand Ralf Diehm. Neben einer höheren Produktionsgeschwindigkeit hat ein Wegfall mechanischer Teile in der Auftragsdüse noch weitere Vorteile für die Elektrodenherstellung: Weil sich die Membran viel präziser steuern lässt als mechanische Ventile, verbessert sich die Fertigungsqualität und der Ausschuss verringert sich. Die Technologie soll nun im Rahmen eines Spin-offs von Ralf Diehm und seinem Team vom Labor zur industriellen Produktion überführt werden.

Kürzere Trocknungszeiten notwendig

Damit die Batterieherstellung insgesamt von einer schnelleren Elektrodenbeschichtung profitiere, müsse der Produktionsprozess allerdings an anderer Stelle nachjustiert werden. Denn eine schnellere Beschichtung zieht kürzere Trocknungszeiten nach sich. Andernfalls müssen Trocknerstrecke und damit die gesamte Anlage entsprechend angepasst und vergrößert werden. Auf Basis von grundlegenden Untersuchungen unterschiedlicher Trocknungsbedingungen konnte am KIT bereits eine wissensbasierte Optimierung des Trocknungsprozess erfolgen, der die Trocknungszeit bei gleichbleibenden Elektrodeneigenschaften um etwa 40 Prozent reduziert. Im vom Bundesministerium für Bildung und Forschung geförderten Forschungscluster ProZell II sollen diese Arbeiten nun gemeinsam mit Partnern von der Technischen Universität Braunschweig und dem Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg in Ulm weitergeführt werden.

Eine Elektrodenfertigung in Rekordgeschwindigkeit bei gleichzeitig hoher Fertigungsqualität ermöglicht erhebliche Kosteneinsparung für die Zellherstellung. Auf einer typischen Fertigungslinie können Elektroden für bis zu dreimal so viele Batteriezellen hergestellt werden und so dazu beitragen, den wachsenden Bedarf für die Elektromobilität zu decken. Die TFT entwickelt ihre Technologien zur Elektrodenherstellung – auch für zukünftige neue Materialsysteme – als Teil des Center for Electrochemical Energy Storage Ulm & Karlsruhe, einer der weltweit größten Forschungsplattformen im Bereich der Batterieforschung. Neue Erkenntnisse zur Produktionstechnologie fließen zudem direkt in das Exzellenzcluster Post Lithium Storage, in dem das KIT gemeinsam mit der Universität Ulm die Batterien der Zukunft entwickelt.