Bild-Analyse von Hirntumoren

KI hilft, Therapieansprechen besser zu beurteilen

24. April 2019, 12:30 Uhr | Deutsches Krebsforschungszentrum/Universitätsklinikums Heidelberg
Künstliche Intelligenz (Symbolbild)
© Designed by Freepik*

Wissenschaftler haben ein neues Verfahren zur automatisierten Bild-Analyse von Hirntumoren entwickelt. In ihrer aktuellen Arbeit zeigen sie, dass anhand von MRT-Aufnahmen sorgfältig trainierte maschinelle Lernverfahren das Therapieansprechen bei Hirntumoren verbessern.

Diesen Artikel anhören

Gliome sind die häufigsten und bösartigsten Hirntumoren bei Erwachsenen. In Deutschland erkranken jährlich ca. 4500 Menschen an einem Gliom. Die Tumoren lassen sich durch eine Operation häufig nicht vollständig entfernen. Chemo- oder Strahlentherapie sind nur begrenzt wirksam, da der Tumor eine hohe Widerstandskraft besitzt.

Eines der wesentlichen Kriterien zur präzisen Beurteilung der Wirksamkeit einer neuen Therapie bei Hirntumoren ist die Wachstumsdynamik, die über MRT-Bildgebung ermittelt wird. Doch das manuelle Messen der Tumorausdehnung in zwei Ebenen in den kontrastverstärkten MRT-Aufnahmen ist fehleranfällig und führt leicht zu abweichenden Ergebnissen. »Das kann die Beurteilung des Therapieansprechens und in der Folge die Reproduzierbarkeit und Präzision von wissenschaftlichen Aussagen, die auf Bildgebung beruhen, negativ beeinflussen«, erklärt Martin Bendszus, Ärztlicher Direktor der Abteilung Neuroradiologie am Universitätsklinikum Heidelberg.

Ärzte und Wissenschaftler vom Universitätsklinikum Heidelberg und vom Deutschen Krebsforschungszentrum (DKFZ) beschreiben in ihrer aktuellen Arbeit das große Potenzial von maschinellen Lernverfahren in der radiologischen Diagnostik. Das Team hat neuronale Netzwerke entwickelt, um computerbasiert das Therapieansprechen von Hirntumoren in der MRT standardisiert und vollautomatisch zu beurteilen und klinisch zu validieren.

Untersuchungen von 534 Glioblastom-Patienten aus ganz Europa

Anhand einer Referenzdatenbank mit MRT-Untersuchungen von knapp 500 Hirntumorpatienten des Universitätsklinikums Heidelberg erlernten die Algorithmen unter dem Einsatz künstlicher neuronaler Netzwerke die Hirntumoren automatisch zu erkennen und zu lokalisieren. Außerdem wurden die Algorithmen darauf trainiert, die einzelnen Bereiche (kontrastmittelaufnehmender Tumoranteil, peritumorales Ödem) volumetrisch zu vermessen und das Therapieansprechen präzise zu beurteilen.

Die Ergebnisse wurden in Kooperation mit der European Organisation for Research and Treatment of Cancer (EORTC) validiert. Die Auswertung von über 2000 MRT-Untersuchungen von 534 Glioblastom-Patienten aus ganz Europa zeigt, dass unser computerbasierter Ansatz eine zuverlässigere Beurteilung des Therapieansprechens ermöglicht, als es mit der herkömmlichen Methode der manuellen Messung möglich wäre. »Wir konnten die Verlässlichkeit der Beurteilung um 36 Prozent verbessern. Das kann für die auf Bildgebung basierende Beurteilung der Wirksamkeit einer Therapie in klinischen Studien von entscheidender Bedeutung sein. Auch die Vorhersage des Gesamtüberlebens war mit unserem neuen Verfahren exakter möglich«, erklärt Kickingereder.

Die Technik zur standardisierten und vollautomatischen Beurteilung des Therapieansprechens von Hirntumoren soll möglichst rasch in klinischen Studien und zukünftig auch in der klinischen Routine eingesetzt werden. Dazu konzipierten und evaluierten die Forscher zusätzlich eine Softwareinfrastruktur, die eine vollständige Integration der Entwicklung in bestehende radiologische Infrastruktur ermöglicht. »Damit schaffen wir die Voraussetzungen für einen breiten Einsatz und eine vollautomatisierte Verarbeitung und Analyse von MRT-Untersuchungen bei Hirntumoren innerhalb weniger Minuten«, erläutert Klaus Maier-Hein.

Originalpublikation:

Kickingereder P, Isensee F, Tursunova I, Petersen J, Neuberger U, Bonekamp D, Brugnara G, Schell M, Kessler T, Foltyn M, Harting I, Sahm F, Prager M, Nowosielski M, Wick A, Nolden M, Radbruch A, Debus J, Schlemmer HP, Heiland S, Platten M, von Deimling A, van den Bent MJ, Gorlia T, Wick W, Bendszus M, Maier-Hein KH. Automated quantitative tumor response assessment of MRI in neuro-oncology with artificial neural networks: a multicenter, retrospective study. Lancet Oncology 2019, DOI: 10.1016/S1470-2045(19)30098-1

 

(me)

*Bild: Designed by Freepik


Lesen Sie mehr zum Thema


Jetzt kostenfreie Newsletter bestellen!

Weitere Artikel zu elektroniknet