Sagittarius A* Schwarzes Loch zeigt auf die Erde

Das Globale Millimeter-VLBI-Netzwerk (GMVA) unter Miteinbeziehung des ALMA-Radioteleskops in Chile.
Das Globale Millimeter-VLBI-Netzwerk (GMVA) unter Miteinbeziehung des ALMA-Radioteleskops in Chile.

Dank der Nutzung des hochempfindlichen Teleskops ALMA ist es Forschern gelungen, neue Informationen über das schwarze Loch im Zentrum der Milchstraße zu gewinnen. Das erstaunliche: es tanzt entweder aus der Reihe, oder sein Strahlungskegel zeigt direkt auf die Erde.

Bis jetzt hat ein diffuser Nebel aus heißem Gas die Astronomen daran gehindert, scharfe Bilder des supermassereichen Schwarzen Lochs Sagittarius A* (Sgr A*) im Zentrum unserer Milchstraße zu erhalten. Es war jetzt zum ersten Mal möglich, das sehr leistungsfähige ALMA-Radioteleskop im Norden von Chile in ein weltweites Netzwerk von Radioteleskopen einzubinden, um damit diesen Nebel zu durchdringen. Die Quelle sorgt auch weiterhin für Überraschungen: die gesamte Strahlung kommt aus einem besonders kleinem Gebiet; möglicherweise ein Indiz für einen Strahlungskegel (Jet), der direkt in Richtung der Erde zeigt.

Die Beobachtungen erfolgten bei der hohen Frequenz von 86 GHz (oder 3,5 mm Wellenlänge) mit der Technik der »Very Long Baseline Interferometry« (VLBI), mit der eine Reihe von Radioteleskopen zu einem virtuellen Riesenteleskop fast von der Größe der Erde zusammengeschaltet wurden. Damit wurde es möglich, die genaue Auswirkung der Streueffekte zu kartieren, die unseren Blick auf die eigentliche Zentralregion unserer Milchstraße trüben. Durch die Korrektur der meisten dieser Streueffekte konnte ein erstes Bild der unmittelbaren Umgebung des Schwarzen Lochs erhalten werden.

Die hohe Qualität des so korrigierten Radiobilds liefert dem Forscherteam verbesserte Werte zur Präzisierung von theoretischen Modellen, die die Eigenschaften des Gases in der direkten Umgebung von Sgr A* beschreiben. Der überwiegende Anteil der Radiostrahlung der Zentralquelle kommt aus einem Bereich mit einer Ausdehnung von nur einem 300millionsten Teil eines Winkelgrades, und zeigt eine symmetrische kompakte Struktur.

»Das deutet darauf hin, dass die Radiostrahlung eher von einer Scheibe mit einfallendem Gas herrührt als von einem Radiojet«, erklärt Sara Issaoun, Doktorandin an der Radboud-Universität in Nijmegen/Niederlande, die Erstautorin der Veröffentlichung, die die Daten anhand einer ganzen Reihe von Computermodellen überprüft hat. »Das würde allerdings Sgr A* zu einer Ausnahme gegenüber allen anderen Schwarzen Löchern machen, von denen wir Radiostrahlung empfangen. Eine Alternative wäre nur, wenn der Jet fast direkt auf uns zeigt.«

Der deutsche Astronom Heino Falcke, Professor für Radioastronomie an der Radboud-Universität und Betreuer der Doktorarbeit von Sara Issaoun, hält diese Aussage zwar für ungewöhnlich, schließt sie aber keineswegs mehr aus. Noch im letzten Jahr würde er es als ein künstlich konstruiertes Modell angesehen haben, aber erst kürzlich kam das GRAVITY-Team durch Beobachtungen mit dem Very Large Telescope Interferometer der ESO mit ganz anderer Beobachtungstechnik zu ganz ähnlichen Schlüssen. »Es könnte also sehr wohl richtig sein«, schließt Falcke, »und das bedeutet, dass wir das Biest unter einem besonderen Blickwinkel sehen.«

Weit weg und ziemlich klein

Supermassereiche Schwarze Löcher kommen in den Zentren von Galaxien sehr häufig vor und erzeugen die energiereichsten Phänomenen im bekannten Universum. Es wird angenommen, dass sich Materie im direkten Umfeld des Schwarzen Lochs in einer rotierenden Scheibe, der so genannte Akkretionsscheibe, ansammelt. Ein Teil dieser Materie wiederum wird senkrecht dazu in Form von zwei entgegengesetzt gerichteten stark gebündelten Strahlungskegel oder Jets mit fast Lichtgeschwindigkeit ausgestoßen. Dadurch wird typischerweise eine große Menge von Radiostrahlung erzeugt.

Sgr A* ist das nächstgelegene supermassereiche Schwarze Loch mit einem »Gewicht« von ca. vier Millionen Sonnenmassen. Seine scheinbare Ausdehnung am Himmel beträgt weniger als ein 100 Millionstel Winkelgrad; als würde man einen Tennisballs auf dem Mond betrachten. Um derart kleine Strukturen zu erfassen, ist die Beobachtungstechnik der Interferometrie mit langen Basislinien (VLBI) erforderlich. Die erreichte Winkelauflösung wird nochmals durch die Erhöhung der Frequenz verbessert. Im Moment liegt die höchste Frequenz, bei der VLBI-Beobachtungen überhaupt durchgeführt werden können, bei 230 GHz.

Beobachtungen von der Nord- und Südhalbkugel

Die Ergebnisse des internationalen Teams um Sara Issaoun, dem auch Forscher der beiden wissenschaftlichen Abteilungen Zensus und Kramer am MPIfR angehören, beschreiben die ersten VLBI-Beobachtungen bei 86 GHz unter Teilnahme des ALMA-Teleskops, des bei weitem empfindlichsten Radioteleskopes bei dieser Wellenlänge. ALMA wurde erstmalig im April 2017 als Teil des vom MPIfR betriebenen »Global Millimeter VLBI Array« (GMVA) eingesetzt. Im Rahmen des »ALMA-Phasing-Projekts« wurden die technischen Bedingungen geschaffen, um VLBI mit ALMA zu ermöglichen. Dies war ausschlaggebend für den Erfolg der Beobachtungen von Sgr A*.

Die Beteiligung von ALMA an Millimeter-VLBI-Beobachtungen ist gleich aus zwei Gründen wichtig, einmal wegen der Empfindlichkeit des Teleskops aber auch wegen seiner Lage auf der Südhalbkugel der Erde. Neben ALMA sind zwölf weitere Radioteleskope an dem Projekt beteiligt, die alle auf der Nordhalbkugel der Erde in Nordamerika und Europa liegen. Unter Einbeziehung von ALMA konnte die Winkelauflösung verdoppelt werden, im Vergleich so zu vorherigen Messungen bei dieser Frequenz. Dies ermöglichte eine verbesserte und schärfere Kartierung von Sgr A*, mit deutlich reduziertem Einfluss interstellarer Streuung (das ist ein Effekt, der durch Dichteschwankungen im ionisierten interstellaren Material entlang der Sichtlinie vom galaktischen Zentrum bis zur Erde hervorgerufen wird).

Zukünftige Untersuchungen bei unterschiedlichen Wellenlängen werden ergänzende Informationen bringen. Die Beobachtungen von Sgr A* liefern Schlüsselergebnisse für das bessere Verständnis von Schwarzen Löchern, den wohl exotischsten Objekten im bekannten Universum.