Positionsbestimmung mit IEEE 802.11az

Standorte per Deep Learning bestimmen

8. Mai 2023, 6:00 Uhr | Von Dr. Ahmad Saad, Florent Busnoult und Nadia Shivarova
Diesen Artikel anhören

Fortsetzung des Artikels von Teil 3

Literatur

[1] Huang, H.; et al.: Deep Learning for Physical-Layer 5G NR Wireless Techniques: Opportunities, Challenges and Solutions. IEEE Wireless Communications, 2020, H. 1, S. 214–222.

[2] Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning. The MathWorks, Website, www.mathworks.com/help/wlan/ug/three-dimensional-indoor-positioning-with-802-11az-fingerprinting-and-deep-learning.html.

[3] Kokkinis, A.; Kanaris, L.; Liotta, A. und Stavrou, S.: RSS Indoor Localization Based on a Single Access Point. Sensors, 2019, H. 17, 3711, https://doi.org/10.3390/s19173711.

[4] Wang, X.; Gao, L.; Mao, S. und Pandey, S.: CSI-Based Fingerprinting for Indoor Localization: A Deep Learning Approach. IEEE Transactions on Vehicular Technology, 2017, H. 1, S. 763–776. https://doi.org/10.1109/TVT.2016.2545523.

[5] 802.11az Positioning Using Super-Resolution Time of Arrival Estimation. The MathWorks, Website, https://de.mathworks.com/help/wlan/ug/802-11az-indoor-positioning-using-super-resolution-time-of-arrival-estimation.html.

[6] Humphrey, D. und Hedley, M.: Super-Resolution Time of Arrival for Indoor Localization. 2008 IEEE International Conference on Communications, Konferenzband, S. 3286–3290.

[7] Perahia, E. und Stacey, R.: MIMO channel estimation. Next Generation Wireless LANs: 802.11n und 802.11ac, Cambridge University Press, 2. Auflage, 2013, S. 100.

[8] van de Beek, J. J.; et al.: On Channel Estimation in OFDM Systems. 1995 IEEE 45th Vehicular Technology Conference. Countdown to the Wireless Twenty-First Century, Konferenzband, S. 815–819.

[9] Hao, Y.; Ye Li, G. und Juang, B.-H.: Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems. IEEE Wireless Communications Letters, 2018, H. 1, S. 114–117.

[10] Soltani, M.; Pourahmadi, V.; Mirzaei, A. und Sheikhzadeh, H.: Deep Learning–Based Channel Estimation. IEEE Communications Letters, 2019, H. 4, S. 652– 655.

Anbieter zum Thema

zu Matchmaker+

  1. Standorte per Deep Learning bestimmen
  2. Datenaufbereitung
  3. Bau eines Prototyps
  4. Literatur

Lesen Sie mehr zum Thema


Jetzt kostenfreie Newsletter bestellen!

Weitere Artikel zu Machine Learning

Weitere Artikel zu Entwicklungswerkzeuge