[1] Huang, H.; et al.: Deep Learning for Physical-Layer 5G NR Wireless Techniques: Opportunities, Challenges and Solutions. IEEE Wireless Communications, 2020, H. 1, S. 214–222.
[2] Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning. The MathWorks, Website, www.mathworks.com/help/wlan/ug/three-dimensional-indoor-positioning-with-802-11az-fingerprinting-and-deep-learning.html.
[3] Kokkinis, A.; Kanaris, L.; Liotta, A. und Stavrou, S.: RSS Indoor Localization Based on a Single Access Point. Sensors, 2019, H. 17, 3711, https://doi.org/10.3390/s19173711.
[4] Wang, X.; Gao, L.; Mao, S. und Pandey, S.: CSI-Based Fingerprinting for Indoor Localization: A Deep Learning Approach. IEEE Transactions on Vehicular Technology, 2017, H. 1, S. 763–776. https://doi.org/10.1109/TVT.2016.2545523.
[5] 802.11az Positioning Using Super-Resolution Time of Arrival Estimation. The MathWorks, Website, https://de.mathworks.com/help/wlan/ug/802-11az-indoor-positioning-using-super-resolution-time-of-arrival-estimation.html.
[6] Humphrey, D. und Hedley, M.: Super-Resolution Time of Arrival for Indoor Localization. 2008 IEEE International Conference on Communications, Konferenzband, S. 3286–3290.
[7] Perahia, E. und Stacey, R.: MIMO channel estimation. Next Generation Wireless LANs: 802.11n und 802.11ac, Cambridge University Press, 2. Auflage, 2013, S. 100.
[8] van de Beek, J. J.; et al.: On Channel Estimation in OFDM Systems. 1995 IEEE 45th Vehicular Technology Conference. Countdown to the Wireless Twenty-First Century, Konferenzband, S. 815–819.
[9] Hao, Y.; Ye Li, G. und Juang, B.-H.: Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems. IEEE Wireless Communications Letters, 2018, H. 1, S. 114–117.
[10] Soltani, M.; Pourahmadi, V.; Mirzaei, A. und Sheikhzadeh, H.: Deep Learning–Based Channel Estimation. IEEE Communications Letters, 2019, H. 4, S. 652– 655.