Schwerpunkte

Spezialdiode

Terahertz-Empfänger für 6G

08. September 2020, 13:03 Uhr   |  Manne Kreuzer

Terahertz-Empfänger für 6G
© KIT

Zukünftige Mobilfunknetze der sechsten Generation (6G) werden aus vielen kleinen Funkzellen bestehen.

Forscher am Karlsruher Institut für Technologie (KIT) haben ein neuartiges Konzept für einfache und kostengünstige Terahertz-Empfänger entwickelt, die aus einer einzigen Diode bestehen und diese mit einem speziellen Signalverarbeitungsverfahren kombinieren.

Auf 5G wird 6G folgen: Dazu bieten sich Frequenzen im Terahertz-Bereich an, die im elektromagnetischen Spektrum zwischen den Mikrowellen und der Infrarotstrahlung liegen. Allerdings sind die entsprechenden Empfänger noch vergleichsweise komplex und dementsprechend teuer; zudem stellen sie häufig den Engpass für die erreichbare Bandbreite dar. Forscher am Institut für Photonik und Quantenelektronik (IPQ), am Institut für Mikrostrukturtechnik (IMT) sowie am Institut für Beschleunigerphysik und Technologie (IBPT) des KIT haben nun gemeinsam mit dem Diodenhersteller Virginia Diodes (VDI) in Charlottesville/USA einen besonders einfachen und kostengünstig herzustellenden Empfänger für Terahertz-Signale entworfen.

Als Empfänger dient eine einzige Diode, mit der das Terahertz-Signal zunächst einmal gleichgerichtet wird. Dabei handelt es sich um eine Schottky-Diode, die sich durch hohe Geschwindigkeit auszeichnet. Sie fungiert als Hüllkurvendetektor und gewinnt die Amplitude der Terahertz-Signale zurück.

Allerdings wird zur korrekten Dekodierung des Datensignals zusätzlich noch die zeitlich veränderliche Phase der Terahertz-Welle benötigt, die beim Gleichrichten üblicherweise verloren geht. Um dieses Problem zu lösen, nutzen die Forscher digitale Signalverarbeitungsverfahren in Kombination mit einer speziellen Klasse an Datensignalen, bei denen sich die Phase mithilfe der sogenannten Kramers-Kronig-Relationen aus der Amplitude rekonstruieren lässt. Bei der Kramers-Kronig-Relation handelt es sich um eine mathematische Beziehung zwischen dem Real- und dem Imaginärteil eines analytischen Signals.

Mit dem neuen Empfänger erreichten die Wissenschaftler eine Datenübertragungsrate von 115 Gbit/s auf einer Trägerfrequenz von 0,3 THz über eine Entfernung von 110 m.

Auf Facebook teilenAuf Twitter teilenAuf Linkedin teilenVia Mail teilen

Verwandte Artikel

KIT - Karlsruher Institut für Technologie