Aber nicht nur in der Produktion wird gespart und optimiert, sondern auch beim Material. Nicht mehr als unbedingt nötig − das ist das Prinzip von Dünnschicht-Solarzellen. Sie bestehen meist aus einem preiswerten Träger, auf den das elektrisch aktive Material als ultradünne Schicht aufgebracht wird. Um Dünnschichtsolarzellen qualitativ hochwertig und dabei kostengünstig herstellen zu können, hat das Fraunhofer-Institut für Schicht- und Oberflächentechnik IST in Braunschweig verschiedene Verfahren für jeden einzelnen Produktionsschritt entwickelt. Die Halbleiterschichten, das Herz der Zelle, werden zum Beispiel mit dem Hot-Wire-CVD-Verfahren hergestellt. »Der Vorteil gegenüber herkömmlichen Verfahren ist die schonende Form der Schichtherstellung«, erklärt Dr. Volker Sittinger vom IST. Bei herkömmlichen plasmaaktivierten CVD-Verfahren ist das Material während der Beschichtung dem Beschuss mit hoch energetische Teilchen ausgesetzt. Anders bei der Hot-Wire-CVD: Dort werden die Schicht bildenden Gase nicht in Plasma, sondern an heißen Drähten angeregt. So entstehen auf schonende Weise hochwertige Schichten. Außerdem lässt sich das für die Herstellung nötige Silangas besser nutzen. »Wir wandeln bei der Hot-Wire-CVD bis zu 90 Prozent der eingesetzten Gase in Schichtmaterial um und erreichen dadurch auch höhere Beschichtungsraten als bei herkömmlichen Prozessen«, sagt Sittinger. Für die Kontaktschichten auf Front- und Rückseite gibt es seit Kurzem die C²-Beschichtungstechnologie (Cylindrical Magnetron Co-Sputtering). Sie ermöglicht es, die Materialzusammensetzung während der Beschichtung zu variieren. Und es soll noch dünner gehen. Mit einem neuen Typ dreidimensional aufgebauter Solarzellen könnten wenige Nanometer dünne Schichten möglich sein. Das geht nur mit konturgenauer Abscheidung der Schichten, aber auch dafür gibt es eine Methode: ALD, das steht für Atomlagenabscheidung, aus dem Bereich der Nanotechnologie. (zü) n