TU München / University of Alberta Neues Halbleiter-Hybridmaterial spaltet Wasser effizienter

Dr. Claudia Ott und Doktorand Felix Reiter arbeiten an einem effizienteren Wasserspaltungskatalysator in ihrem Labor in Garching.
Dr. Claudia Ott und Doktorand Felix Reiter arbeiten an einem effizienteren Wasserspaltungskatalysator in ihrem Labor in Garching.

Bisher bremst der niedrige Wirkungsgrad den großindustriellen Einsatz der Elektrolyse von Wasser zur Erzeugung nachhaltiger Brennstoffe. Ein internationales Forscher-Team hat nun einen viermal effizienteren Katalysator zur Wasserspaltung entwickelt.

Ein Forscher-Team der Technischen Universität München (TUM) hat im Rahmen einer internationalen Kooperation einen effizienten Wasserspaltungskatalysator entwickelt. Er besteht aus einer Doppelhelix-Halbleiterstruktur, umhüllt mit Kohlenstoffnitrid. Dieser Katalysator ist ideal um billig und nachhaltig Wasserstoff zu erzeugen. Ein wichtiger Schritt in Richtung Klimaneutralität.

Dem internationalen Team um den TUM-Chemiker Tom Nilges und den Ingenieur Karthik Shankar von der University of Alberta ist es gelungen, eine stabile und trotzdem flexible Halbleiterstruktur zu finden, die Wasser deutlich effizienter spaltet als es bisher möglich war. Kern der Struktur ist eine anorganische Doppelhelix-Verbindung aus den Elementen Zinn, Iod und Phosphor (SnIP). Sie wird in einem einfachen Prozess bei Temperaturen um 400°C synthetisiert. SnIP-Fasern sind einerseits flexibel und gleichzeitig so robust wie Stahl.

»Das Material vereinigt die mechanischen Eigenschaften eines Polymers mit dem Potential eines Halbleiters«, erklärt Tom Nilges, Professor für Synthese und Charakterisierung innovativer Materialien an der TU München. »Daraus können wir in einem weiteren technischen Schritt flexible Halbleiterbauteile herstellen.«

Bilder: 3

Effizienter Katalysator zur Wasserspaltung

Neues Halbleiter-Hybridmaterial für die nachhaltige Wasserstoffproduktion

Weiche Kohlenstoffnitrid-Schale, harter SnIP-Kern

Mit dem Wasserspaltungskatalysator entwickelte das Forschungsteam eine erste Anwendung für das ungewöhnliche Material. Sie stellten dafür jeweils Nanoteilchen aus beiden Ausgangssubstanzen her und vermischten die Suspensionen dieser beiden Nanoteilchen miteinander. Dabei entsteht eine Struktur aus hartem und trotzdem flexiblem Kern aus SnIP-Doppelhelices umhüllt mit einer weichen Schale aus Kohlenstoffnitrid.

Wie Messungen zeigten, ist die so entstandene heterogene Struktur nicht nur deutlich stabiler als die Ausgangsstoffe, sie kann auch Wasser viermal effizienter spalten als bisher möglich – und ist so interessant als Material, mit dem sich günstig Wasserstoff herstellen oder überschüssiger Strom aus Windkraftanlagen chemisch speichern lässt.

Eindimensionale Fasern vergrößern Oberfläche

Die hohe Effizienz des Katalysators hängt vor allem mit seiner größeren Oberfläche zusammen. Dem Team gelang es, die Oberfläche zu vergrößern, indem sie die SnIP-Fasern in feinere Stränge teilten. Am effektivsten ist eine Mischung aus 30 Prozent SnIP mit 70 Prozent Kohlenstoffnitrid.

Die dünnsten Fasern bestehen dabei aus wenigen Doppelhelix-Strängen und sind nur wenige Nanometer dick. Das Material ist also praktisch eindimensional. Eingewickelt in Kohlenstoffnitrid behält es seine hohe Reaktivität, ist aber langlebiger und damit als Katalysator besser geeignet.

Auch für die Optoelektronik interessant

Die eindimensionalen SnIP-Doppelhelices eröffnen auch noch ganz andere Anwendungen . Besonders spannend für die Forschenden wäre es, nur noch einen Doppelhelix-Strang von SnIP zu haben. Der würde dann rechts- oder linksdrehend vorliegen — mit jeweils ganz besonderen optischen Eigenschaften. Das macht SnIP für die Optoelektronik interessant.

»Wir konnten theoretisch zeigen, dass viele andere Verbindungen dieser Art existieren können und arbeiten gerade an der Synthese dieser Materialien«, ergänzt Nilges. »Flexible anorganische, nanometergroße 1D-Halbleiter können einen ebenso großen Hype auslösen wie es derzeit bei 2D-Schichtmaterialien wie Graphen, Phosphoren oder Molybdändisulfid der Fall ist.«