Weltraumroboter - The Next Generation Roboter meistert lebensfeindliches Gebiet

Der Sternrad-Rover Asguard IV navigiert autonom durch eine Lavahöhle auf Teneriffa.
Der Sternrad-Rover Asguard IV navigiert autonom durch eine Lavahöhle auf Teneriffa.

Roboter im Weltraum sind heute meist passive Beobachter oder werden durch den Menschen von der Erde aus gesteuert. Schon bald aber sollen sie eigenständig und über lange Zeiträume hinweg unter den extremen Bedingungen operieren. Doch auch die Erde kann für einen Roboter gefährliches Terrain sein.

In künftigen Weltraummissionen werden Roboter für immer komplexere Aufgaben eingesetzt: Auf fremden Planeten sollen sie in schwer zugängliche Gebiete wie Höhlen und Krater vordringen oder Infrastruktur für zukünftige Basislager aufbauen, im Orbit Wartungs- und Reparaturarbeiten an Satelliten vornehmen oder Weltraumschrott aus der Erdumlaufbahn entfernen. Dabei ist die Fernsteuerung der Systeme von der Erde aus allein aufgrund der verzögerten Kommunikation zu weit entfernten Himmelskörpern nicht praktikabel. Aus diesem Grund müssen zukünftige Weltraumroboter selbstständig handeln können.

Der Roboter, der sein eigenes Verhalten reflektiert

Das DFKI Robotics Innovation Center entwickelt autonome Robotertechnologien für den Weltraumeinsatz, die durch viele unterschiedliche Sensoren ihre Umwelt umfassend wahrnehmen können. Für die Umgebungserfassung, Lokalisierung und Bewegungsplanung der Systeme setzen die Bremer Forscherinnen und Forscher zudem auf Methoden und Algorithmen der künstlichen Intelligenz, zum Beispiel maschinelle Lernverfahren. Diese ermöglichen den Robotern nicht nur, eigenständig zu handeln und Entscheidungen zu treffen, sondern auch aus dem eigenen Verhalten zu lernen. Nur so ist ein Einsatz im Rahmen planetarer und orbitaler Missionen über längere Zeiträume und ohne Eingreifen des Menschen möglich.

Um auf fremden Planeten auch in schwieriges und wissenschaftlich besonders interessantes Terrain vordringen zu können, entwerfen die Wissenschaftlerinnen und Wissenschaftler hochkomplexe und biologisch inspirierte Mobilitäts- und Morphologie-Konzepte: von vielgliedrigen Laufrobotern über hybride Systeme, die über Bein-Rad-Konstruktionen verfügen, und schreitfähigen Rovern mit aktivem Fahrwerk bis hin zu aufrecht gehenden und kletternden Systemen in menschenähnlicher Gestalt. Aufgrund ihrer Modularität und Rekonfigurierbarkeit lassen sich diese Systeme flexibel an unterschiedliche Bedingungen und Aufgabenstellungen anpassen. Sie sind in der Lage, allein, in robotischen Teams oder in Zusammenarbeit kollaborativ mit dem Menschen anspruchsvolle Weltraummissionen zu absolvieren.

Per Exoskelett ins Weltall

Die autonomen Roboter sollen im Bedarfsfall auch von der Erde oder dem Raumschiff aus fernsteuerbar sein. Insbesondere bei Aufgaben, die ein hohes Maß an Flexibilität erfordern, kann es notwendig sein, dass der Mensch in die Mission eingreift. Die DFKI-Forscherinnen und Forscher entwickeln dafür neuartige Teleoperationstechnologien, die eine intuitive Bedienung ermöglichen. Die Fernsteuerung kann über einen Leitstand mithilfe eines tragbaren Exoskeletts erfolgen, das Kraftrückkopplung ermöglicht. Auf diese Weise spürt der menschliche Operator, wenn das System auf ein Hindernis trifft, und hat so das Gefühl, Teil des Geschehens zu sein.

Künftig sollen Roboter und Astronauten im Weltraum auch direkt zusammenarbeiten beispielsweise beim Aufbau einer Infrastruktur. Hierbei setzt der DFKI-Forschungsbereich auf unterschiedliche Grade der Autonomie: Je nach Komplexität der Aufgabenstellung kann der Roboter mehr oder weniger autonom agieren. Der Astronaut greift ein, wenn der Roboter nicht weiterkommt, und bringt ihm neue Verhaltensweisen bei. Für eine gelingende Zusammenarbeit erforschen die Wissenschaftlerinnen und Wissenschaftler zudem neue Verfahren der Intentionsanalyse und -erkennung, mit denen sich zum Beispiel anhand physiologischer Daten die Gefühlslagen und Zustände des Menschen erfassen und in die Handlungsplanung beziehungsweise die Handlungsoptimierung des Roboters integrieren lassen.

Raus aus dem Labor: Bewährungsprobe für autonome Weltraumroboter

Um sicherzustellen, dass die neuen Technologien unter den rauen Umgebungsbedingungen auf Mars oder Mond wie geplant funktionieren, werden diese auch außerhalb des Labors unter möglichst realistischen Bedingungen in sogenannten Analogmissionen getestet. Die Wissenschaftler des DFKI und der Universität Bremen begaben sich Ende 2016 in die marsähnliche Wüste des US-Bundestaats Utah, um eine komplette Missionssequenz zu simulieren und die Fähigkeiten der Rover SherpaTT und Coyote III auf die Probe zu stellen. Ziel der Mission war es, im heterogenen Roboter-Team eine logistische Kette zu errichten, um autonom die Umgebung zu erkunden und Bodenproben zu nehmen. Für die Kontrolle der Mission nutzten die Wissenschaftler einen Leitstand in Bremen, der per Satellitenlink eine Kommunikationsverbindung zu den Robotern in Utah aufbaute. Per Exoskelett gelang es einem Operator, die Systeme aus über 8 300 Kilometer Entfernung intuitiv zu steuern.

Im November 2017 führte eine zweiwöchige Feldtestkampagne DFKI-Forscher auf die Kanareninsel Teneriffa. Dort testeten sie neu entwickelte Algorithmen zur (teil-)autonomen Exploration von schwer zugänglichem Gelände, die es den Robotern CREX und Asguard IV ermöglichten, die für die Raumfahrtforschung hochinteressanten Lavahöhlen auf der Insel zu erkunden. Zuletzt – von November bis Dezember 2018 – stellten die Bremer Forscher zusammen mit europäischen Partnern für den Weltraumeinsatz entwickelte Software in der marokkanischen Wüste auf die Probe. Als robotische Testplattform diente erneut der hybride Schreit- und Fahrrover SherpaTT des DFKI, der durch die neue Software eine Strecke von über 1,3 Kilometern durch die von weiten Ebenen, aber auch steilen Hängen und Schluchten geprägten Landschaft zurücklegte.

Technologietransfer: Weltraumtechnologien für lebensfeindliche Erdanwendungen

Robotertechnologien für den Weltraum verfügen über ein enormes Transferpotenzial: Die auf unwegsames Gelände spezialisierten Systeme eignen sich auch für den Einsatz in extremen und lebensfeindlichen Umgebungen auf der Erde, zum Beispiel in der Tiefsee oder in kontaminierten Gebieten. Um die notwendige Autonomie und damit die Handlungsfähigkeit zu erreichen, müssen Roboter dort ganz ähnliche Anforderungen erfüllen, insbesondere hinsichtlich ihrer Mobilität, Robustheit und Lernfähigkeit. Dem Team gelang es bereits, den Roboter SherpaTT für ein Tiefsee-Szenario weiterzuentwickeln, bei dem dieser als autonomer Unterwasser-Rover zur nachhaltigen Ressourcengewinnung oder zur Überwachung und Inspektion von Tiefsee-Anlagen einsetzbar ist. Zudem statteten sie den Mikro-Rover Coyote III mit einem Gassensor aus, sodass er in einem Katastrophenszenario selbstständig und ohne Gefährdung von Menschenleben ein schwer zugängliches Gebäude erkunden und austretendes Gas aufspüren kann.