Elektrofahrzeuge Größere Reichweite und längere Batterielebensdauer

Wissenschaftler der Universität Stuttgart entwickeln neue Verfahren, um Silizium in Batteriesystemen für Elektrofahrzeuge einsetzen zu können. Zwei Arbeitsgruppen arbeiteten daran, eine poröse Silizium-Anode herzustellen und zu stabilisieren und so eine hohe Ladezyklen-Festigkeit zu erreichen.

Für mobile Anwendungen ist ein möglichst kleiner Stromspeicher mit höherer Kapazität erwünscht. Prädestiniert dafür wäre in diesem Bereich ein Lithium-Ionen-Akku mit einer Silizium-Anode. Bisher werden in Lithium-Ionen-Akkus überwiegend Anoden aus Graphit eingesetzt. Denn die Silizium-Anode bietet zwar eine hohe Ladekapazität, hat aber einen großen Nachteil: Beim Laden und Entladen verändert sich ihr Volumen zum Teil um das Dreifache. Dies führt zu mechanischen Belastungen, die die Anode nach wenigen Ladezyklen zerstören.

Am Institut für Photovoltaik (IPV) der Uni Stuttgart gelang es Prof. Dr. Jürgen H. Werner und seinem Team, poröse und somit mikrostabilisierte Silizium-Anoden herzustellen. Diese Mikrostabilisierung kann in einem einfachen Verfahrensschritt durch lokale Laserbestrahlung erfolgen.

Die Halbleiterschichten werden dazu durch Vakuumverfahren – beispielsweise PECVD oder Sputtern – auf eine Metallfolie aufgebracht. Bei Bedarf werden zur Erhöhung der Materialstärke mehrere Layer nacheinander abgeschieden. Die so erzeugte kompakte Schicht wird durch lokale Laserbestrahlung aufgebrochen, so dass letztlich eine poröse Siliziumschicht entsteht, die anschließend mikrostabilisiert wird. Zusätzlich können durch lokales Laserbestrahlen unterschiedlich dotierte Bereiche in der Siliziumschicht erzeugt. Vor allem p-dotierte Bereiche auf einer n-dotierten Halbleiterschicht wirken als Stützbereiche, da sie weniger Lithium-Ionen einlagern als die n-dotierten Bereiche. Dadurch wird das Aufquellen verhindert und die mechanische Stabilität der Anode erhöht.

Die beschichtete Folie wird abschließend metallisiert und kontaktiert. Durch dieses Verfahren kann einfach und kostengünstig eine Batterie mit einem großen Anteil an aktivem Material und hoher Energiedichte hergestellt werden.

Das zweite Verfahren wurde am Lehrstuhl II des Instituts für Materialwissenschaft der Universität Stuttgart (Prof. Dr. Guido Schmitz, ehemaliger Stellvertreter Prof. Dr. Horst Strunk) entwickelt und setzt ebenfalls am Problem der mechanischen Belastung einer Silizium-Anode in einem Li-Ionen-Akku an. Den Wissenschaftlern gelang es, eine Struktur zu entwickeln, die eine hohe mechanische Belastbarkeit auch bei mehreren hundert Ladezyklen aufweist und im Durchlaufverfahren produziert werden kann.

In diesem Verfahren wird die Oberfläche eines elektrischen leitfähigen Substrates z.B. eine Metallfolie oder eine leitfähige Polymerfolie mit Silizium beschichtet. Auf der Silizium-Schicht wird eine weitere, metallhaltige Schicht aus Aluminium aufgebracht. Daraufhin erfolgt eine Wärmebehandlung, bei der Temperatur und Dauer so optimiert werden, dass eine partielle Interdiffusion von beiden Materialien stattfindet und der Halbleiter zumindest teilweise in den kristallinen Zustand übergeht. Im letzten Schritt werden Teile der metallhaltigen Schicht an der Oberfläche über ein nasschemisches Verfahren entfernt. Nebenbei bildet sich eine konforme Aluminiumoxid-Funktionsschicht auf der nanostrukturierten porösen Silizium-Schicht, die als Anodenmaterial in einem Li-Ionen-Akku eingesetzt eine hohe Stabilität aufweist.

Erste Versuche mit dem Labormodell eines Li-Ionen-Akkus sollen bereits gezeigt haben, dass die Kapazität ohne größere Optimierungen auch nach 500 Ladezyklen stabil bei ca. 1650 mAh/g lag, mehr als das Vierfache des für heutige Lithium-Ionen-Akku mit Graphit-Anode üblichen.