Continental und TU Darmstadt Maschinell lernendes Fahrerassistenzsystem entwickeln

Das Assistenzsystem hilft beim Passieren von Rechts-vor-Links-Kreuzungen. Eine Innenraumkamera erkennt dabei, ob der Fahrer die Verkehrssituation erfasst hat.
Continental und die TU Darmstadt haben ein System entwickelt und in einen Prototypen eingebaut, das Autofahrer in innerstädtischen Verkehrssituationen unterstützt. Beispielsweise hilft es beim Passieren von Rechts-vor-Links-Kreuzungen. Eine Innenraumkamera erkennt dabei, ob der Fahrer die Verkehrssituation erfasst hat.

Continental und die Technische Universität Darmstadt haben in der vierten Auflage des Forschungsprojekts Proreta ein maschinell lernendes Fahrzeugsystem entwickelt, das Autofahrer in innerstädtischen Verkehrssituationen unterstützt. Dieses wurde in einem Protopen verbaut.

Eine Schlüsselrolle in dem dreieinhalbjährigen Forschungsprojekt spielte das Thema maschinelles Lernen.  Algorithmen erstellen auf Basis unterschiedlicher Fahrzeugdaten ein stets aktuelles Fahrtypprofil der Person hinter dem Lenkrad. Auf dieser Grundlage werden die Empfehlungen des Stadtassistenten (City Assistant System) für Fahrmanöver an den Fahrstil des Fahrers angepasst.

Damit ein Assistenzsystem in einer komplexen Verkehrssituation eine Empfehlung an den Fahrer ausgeben kann, die von diesem akzeptiert wird – den Fahrer quasi wie ein guter Beifahrer kennt – muss das System dessen Fahrstil und damit auch dessen subjektives Sicherheits- oder Risikoempfinden analysieren. Ein solches Fahrprofil entsteht sicher und schnell auf Basis eines maschinellen Lernverfahrens. Dafür wertet das System Daten aus, die während der Fahrt erfasst werden. Dem Algorithmus geben unter anderem Beschleunigung, Gierraten, Bremsvorgänge und Querbeschleunigung Aufschluss, um welchen Fahrertyp es sich handelt.

Fahrempfehlungen personalisieren

Testfahrten mit Probanden ergaben, dass bei den im City Assistant System eingesetzten Algorithmen innerhalb von drei bis fünf Fahrmanövern Rückschlüsse auf den aktuellen Fahrstil des Fahrers möglich sind. Damit ist die Zuordnung des Fahrers zu einem oder auch mehreren Clustern von Fahrprofilen möglich, wodurch sich die Fahrempfehlungen des Stadtassistenten stark personalisieren lassen.

Schätzungen zufolge wird die im Jahr 2015 vorhandene Anzahl von sieben Millionen Fahrzeugsystem-Einheiten, die auf künstliche Intelligenz setzen, bis 2025 auf 225 Millionen Einheiten anwachsen. Bei leistungsfähigen maschinell gelernten Algorithmen handelt es sich zumeist um Modelle mit hoher Komplexität, die in ihrer Rohform durch den Menschen nur wenig oder gar nicht interpretierbar sind, ähnlich einer Black Box. Das stellt besondere Herausforderungen an die Absicherung der Assistenzsysteme. Bereits im Rahmen der Algorithmenauswahl für Fahrerassistenzsysteme ist im Rahmen von Proreta 4 eine Absicherungsstrategie mitentwickelt worden. Hier wurden verschiedene Verfahren erarbeitet, um die notwendige Anzahl von Testfällen für gelernte Algorithmen zu minimieren.

Akzeptanz für ADAS schaffen

Anhand des Fahrprofils steuert das System die Zeitfenster für Fahrempfehlungen, etwa beim Linksabbiegeassistenten. Dieses ermittelt anhand der eigenen Positionsdaten sowie Tempo und Abstand des entgegenkommenden Verkehrs, wie groß die Lücken im Gegenverkehr für einen Linksabbiegevorgang sind. Für die Objektdetektion sorgen ein  Fernbereichsradar sowie Nahbereichsradare in den Fahrzeugseiten, die heute in vielen Assistenzsystemen bereits im Einsatz sind.

Keine Unterstützung benötigt der Fahrer bei extrem großen Lücken im Gegenverkehr – sondern nur dann, wenn das notwendige Zeitfenster für sicheres Abbiegen kritisch ist oder es für den Fahrer schwierig wird, dieses abzuschätzen. Das kann bei Nacht oder schlechter Sicht der Fall sein, oder auch bei unerfahrenen oder älteren Autofahrern. Bei starkem Verkehr reduziert das City Assistant System den Stress bei der Lückenfindung und informiert den Fahrer, wenn eine passende Lücke kommt. Versuchsfahrten im Rahmen des Forschungsprojekts ermittelten ein Zeitfenster von fünf bis sieben Sekunden, in denen das System mit Empfehlungen Hilfestellung geben kann. Der untere Wert mit kleineren Lücken im Gegenverkehr gilt dabei für etwas dynamischere, der obere Wert für sehr defensive Fahrer. In beiden Fällen ist für den aktuellen Fahrer gewährleistet: Der Abbiegevorgang lässt sich sicher abschließen.

Das gleiche Prinzip gilt auch für den zweiten Einsatzbereich: die Einfahrt in einen Kreisverkehr. Auch in diesem Fall ermittelt das System auf Basis der Fahrzeug- und Umfeldsensorik, ob eine Verkehrslücke groß genug ist und ob es angesichts des ermittelten Fahrerprofils sinnvoll ist, die Einfahrt in den Kreisverkehr zu empfehlen oder besser auf eine größere Lücke zu warten.

Hat Fahrer Verkehrssituation erfasst?

Eine weitere komplexe Aufgabenstellung ergibt sich für den Stadtassistenten bei Rechts-vor-Links-Kreuzungen. Hier erkennt das System zunächst anhand von Karten-, GPS- und selbst ermittelten Standortdaten, dass sich der Fahrer einer solchen Kreuzung nähert. Mithilfe der Innenraumkamera analysiert das System, ob der Fahrer ankommenden Verkehr, dem Vorfahrt zu gewähren ist, erkannt hat. Dabei prüft das System, ob der Fahrer unmittelbar vor der Kreuzung tatsächlich den Kopf nach rechts in die Kreuzung gewendet und einen anderen Verkehrsteilnehmer fixiert hat; diese Fixierung dauert 250 bis 500 Millisekunden. Bei gefährlicheren Situationen kann das System den Fahrer mittels eines Signals aufmerksam machen. Auch ob der Fahrer korrekt gehandelt hat, wird festgestellt und kann diesem über eine nachträgliche Meldung mitgeteilt werden. In einer serienreifen Version könnte der City Assistant für die beschriebenen Einsatzbereiche um eine Notbremsfunktion erweitert werden.

Landmarken für exakte Fahrzeuglokalisierung

Je genauer die Position des eigenen Fahrzeugs bekannt ist, desto verlässlicher können Fahrerassistenzsysteme in komplexen Verkehrssituationen Entscheidungen treffen. Bestandteil von Proreta 4 war deshalb auch ein kamerabasiertes System für die automatische Kartierung von Landmarken. Das können markante Punkte an Gebäuden oder die Infrastruktur sein. Diese Landmarken werden später von der Fahrzeugkamera wiedererkannt, womit eine exaktere Lokalisierung des Fahrzeugs möglich ist als bei GPS- oder Navigationsdaten. Bei diesem Langzeit-SLAM-Verfahren (Simultaneous Localization and Mapping) werden auf häufiger befahrenen Strecken Landmarken erkannt, bewertet und in einem Datenspeicher im Fahrzeug abgelegt. Damit ist auf diesen Strecken eine Positionserkennung möglich, die eine Genauigkeit von unter einem Meter hat.