2,5 Mio Euro für Forschungsprojekt Mit KI Stickoxide, Ozon und Feinstaub vorhersagen

Der Jülicher Forscher Dr. Martin Schultz will mit Deep-Learning-Methoden lückenhafte Daten zur Verteilung von Luftschadstoffen vervollständigen. Die Ergebnisse könnten als Grundlage zum Schutz der Luftqualität in Städten dienen.

Was neuronale Netze leisten können, zeigt sich bereits in der Bildbearbeitung. Deep-Learning-Algorithmen lassen störende Gegenstände, Menschen und Häuserzeilen unbemerkt verschwinden. Oder sie erzeugen selbst Bilder, ohne dass professionelle Fotografen einen Unterschied feststellen.

Für das Forschungsprojekt erhielt Dr. Schultz Anfang der Woche einen der begehrten Advanced Grants des Europäischen Forschungsrats, der eine Fördersumme von 2,5 Millionen Euro über 5 Jahre verspricht.

Die Luftqualität in den Städten ist seit längerer Zeit in der Diskussion. Wegen der erhöhten Stickoxidwerte drohen Dieselfahrverbote, die Belastung durch Feinstaub gehört mit zu den großen Gesundheitsrisiken unserer Zeit. Doch wie hoch die Schadstoff-Konzentration an einem Ort genau ist, lässt sich in der Regel gar nicht sagen. „Das Messnetz ist selbst in vergleichsweise gut entwickelten Regionen wie in Deutschland längst nicht flächendeckend“, erklärt Dr. Martin Schultz vom Forschungszentrum Jülich. „So gibt es zum Beispiel in Köln, immerhin einer Millionenstadt, gerade einmal 14 Messstellen für Stickoxide, von denen aber nur 4 stündliche Werte liefern und mehr als nur Stickoxide messen.“

In anderen Teilen der Welt ist die Lage noch deutlich schlechter: so gibt es kaum Stationen in Afrika und über den Ozeanen klaffen auch riesige Lücken. Dabei kann sich die Menge an Schadstoffen in der Luft schon in benachbarten Lagen stark unterscheiden. Lokal auftretende Inversionswetterlagen, aber auch die Nähe zu Straßen und Gebäuden haben einen massiven Einfluss auf die Werte.

Dem Mangel an Messdaten will Schultz mit einem Ansatz begegnen, der in der Umweltforschung bislang kaum erprobt wurde, bei anderen Aufgaben jedoch schon sehr gut funktioniert. Der Forscher, einer der weltweit meistzitierten Geowissenschaftler, verzichtet bewusst auf bewährte numerische Modelle. Stattdessen setzt er auf Methoden der „künstlichen Intelligenz“ – in Verbindung mit der Rechenkraft von Supercomputern, wie sie das Jülich Supercomputing Centre (JSC) betreibt