Forschungstransfer Intelligente Drähte mit Gedächtnis

Mithilfe einer ausgeklügelten Steuerung lassen sich im Zusammenspiel mehrerer Drähte ganze Bewegungsabläufe nach festgelegter Choreographie ausführen. Dies demonstrieren die Forscher an Modellfledermäusen, denen sie Drähte als künstliche Muskeln verliehen haben.
Mithilfe einer ausgeklügelten Steuerung lassen sich im Zusammenspiel mehrerer Drähte ganze Bewegungsabläufe nach festgelegter Choreographie ausführen. Dies demonstrieren die Forscher an Modellfledermäusen, denen sie Drähte als künstliche Muskeln verliehen haben.

Am Lehrstuhl für Unkonventionelle Aktorik der Universität des Saarlandes bringen Forscher mit sog. „Formgedächtnis-Drähten“ verschiedenste technische Bauteile in Bewegung. Die haarfeinen Drähte hieven sogar schwere Gewichte, wenn sie unter Strom stehen. Jetzt werden Industriepartner gesucht.

Die Muskeln des Menschen reagieren auf Nervenimpulse, indem sie sich zusammenziehen. Dabei werden sie kürzer. Wenn sie sich wieder entspannen, gehen sie in ihre ursprüngliche Form zurück. Durch dieses Zusammenspiel von Nervensystem und An- und Entspannung der Muskulatur kann der Mensch alle nur erdenklichen Bewegungen vollführen.

Nach ähnlichem Prinzip funktionieren die „intelligenten“ Drähte, an denen an der Saar-Universität die Teams der Professoren Stefan Seelecke und Joachim Rudolph forschen. Sie nutzen dabei die besonderen Eigenschaften von Drähten aus der Legierung Nickel-Titan (kurz NiTi).

Diese Drähte haben die „Gabe“, sich an ihre alte Form zu „erinnern“, wenn sie verformt werden. Werden die Drähte erwärmt, etwa indem ein elektrischer Strom durch sie fließt, ziehen sie sich zusammen und werden deutlich kürzer. Wird der Strom abgeschaltet, kühlen sie ab und werden wieder so lang wie zuvor. Diese Eigenschaften der NiTi-Legierung, die sie von gewöhnlichen Metallen unterscheidet, beruhen auf so genannten Phasenumwandlungen: Wird der Draht warm, wandelt sich seine Gitterstruktur um, was Auswirkungen auf seine Form hat.

Am Lehrstuhl für Unkonventionelle Aktorik der Universität des Saarlandes bringen Forscher um Professor Stefan Seelecke mit den Formgedächtnis-Drähten verschiedenste technische Bauteile in Bewegung. Die haarfeinen Drähte hieven schwere Gewichte, wenn sie unter Strom stehen.

Mithilfe einer ausgeklügelten Steuerung lassen sich im Zusammenspiel mehrerer Drähte ganze Bewegungsabläufe nach festgelegter Choreographie ausführen. Dies demonstrieren die Forscher an Modellfledermäusen, denen sie Drähte als künstliche Muskeln verliehen haben, die die Flügelbewegungen echter Fledermäuse exakt nachahmen: ein Projekt, das Seelecke und sein Team für das North Carolina Museum of Natural Sciences bearbeitet haben, wo der Flügelschlag jetzt naturgetreu beobachtet werden kann (drittes Galeriebild).

Eine weitere Anwendung findet die Technik in einem Inhalator, der Wirkstoffe zielgenau an den Wirkort in der Lunge bringt. Forschungen haben ergeben, dass Wirkstoffteilchen an bestimmten Stellen der Lunge landen, je nachdem wo genau sie aus dem Mundstück des Inhalators eingeatmet werden. Mit intelligenten Drähten kann ein Röhrchen im Mundstück genau in Position gebracht werden, so dass dieses „Wirkstoff-Geschütz“ seine Ladung gezielt in die Lunge „schießen“ kann.

Zusammen mit Ingenieuren am Lehrstuhl für Systemtheorie und Regelungstechnik um Professor Joachim Rudolph befassen sich die Forscher damit, die Algorithmen so weiterzuentwickeln, dass die Länge des Formgedächtnis-Drahts ganz nach Bedarf maßgeschneidert und störungsfrei gesteuert werden kann.

Während beim Menschen die Befehle, etwa den Arm zu strecken oder zu beugen, vom Gehirn über Nervenimpulse an die Muskeln weitergegeben werden, geschieht dies hier über einen „Mikro-Controller“, einen kleinen Halbleiterchip, auf dem alles für die Regelung erforderliche enthalten ist. Das System soll ganz ohne Sensoren auskommen. Die Forscher modellieren die Abläufe, das heißt, sie erfassen die für die Prozesse wesentlichen physikalischen Gegebenheiten und übersetzen sie in mathematische Gleichungen. Unsichtbar berechnen und schätzen darauf aufbauende Algorithmen etwa Störungen und geben sofort Befehle, die diesen entgegenwirken.

Da der Draht bei Wärme seine Länge verändert, ist beispielsweise ein kalter Luftzug störend. Die Saarbrücker Wissenschaftler entwickeln derzeit neuartige Echtzeit-Schätzverfahren und Regelungsmethoden, die solche Temperaturschwankungen oder wechselnde Luftströmungen automatisch ausgleichen sollen.

Die Ingenieure suchen am saarländischen Forschungsstand vom 8. bis 12. April auf der Hannover Messe Partner für weitere Anwendungen (Halle 2, Stand C 40).